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SUMMARY

This paper deals with the consequences of spatial covariances for the analysis of field
experiments. Based on a Monte Carlo simulation, we investigated the Type I error and the
power of three analysis models (block design, exponential and spherical model) in the
context of two true spatial models (exponential and spherical). The block design leads to
considerable bias of the nominal type I error and to a loss of power. In contrast, the
application of the spatial models for analyses guarantees the maintenance of the nominal
statistical type I error and a significantly higher power. Our results confirm the necessity of
model selection in the analysis of field experiments.
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1. Introduction and Challenges

In order to be able to estimate unbiased differences between treatments with high
sufficient precision, field experiments have long made use of the principle of
considering environmental variations, for example those caused by the
heterogeneity of the soil, through the formation of blocks. If fixed block effects
are to be assumed, every block is assigned a fixed effect. When assuming random
block effects in the statistical model, a block-wise covariance modification of the
observation vector is taken for granted. Thus a discontinuous environmental
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transformation is assumed both for fixed and random block effects. However, this
approach is suboptimal, since the discretization of the environmental differences
performed here is an artificial one — from a biological point of view, one has to
assume a continuous modification in most cases.

The inclusion of geostatistic approaches in linear models in particular allows for
flexible consideration of spatially dependent error sources. A number of authors
have pointed out the importance and necessity of such approaches over recent
years (Zimmermann and Harville, 1991; Stroup et al., 1994; Littell et al., 1996;
Gilmour, 1997; Federer, 1998; Schabenberger and Pierce, 2002; Richter and
Kroschewski, 2002; Stroup, 2002).

Still, with regard to practical application, various unsolved problems have to be
dealt with. Among other issues, these are concerned with the selection of a
suitable model, i.e. with the criteria that form the basis for a user’s decision as to
which spatial model to prefer and whether or not to use a spatial model at all.
Another point in this regard is the fact that — from a practical point of view — both
the existence of spatial covariances and a spatial trend have to be taken into
consideration. When selecting a suitable model, importance lies in the question of
whether or not both components of spatial dependencies have to be included and
whether or not the neglecting of one component has any serious consequences.
Furthermore, consideration is given to the question of how practically relevant
data structures with usually low numbers of replications can employ spatial
models with acceptable estimation errors at all in spite of existing spatial
dependencies.

In this contribution, we will examine potential consequences for the testing of
hypotheses of fixed effects in such cases where a certain spatial model exists but
where a different spatial model or a block design is used for the evaluation. We
will analyse the kind of observable effect on the statistical Type I error in the case
of a valid null hypothesis or on the power in the case of a valid alternative
hypothesis.

In order to do this, we make use of a Monte Carlo simulation and use different
spatial dependencies and data structures.

2 Material and Method
2.1 Analysed Spatial Models
The spatial models analysed here are the result of the outcomes of blindfold
experiments (Hu, 2004) and field experiments with treatment effects (Spilke,

2005). As it turns out, the exponential model and the spherical model constitute
particularly well-suited spatial approaches for large numbers of evaluations.
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We now contrast these models with a model of randomized complete block design
(RCBD) with discrete spatial effects in the form of random block effects.

When describing the model, we start from the well-known matrix notation for
mixed linear models:

y=Xp+Zu+e M
with

=p x 1 vector for unknown fixed effects,
= q x 1 vector for unknown random effects,
=n x 1 vector for unknown random rest effects,
,Z = known experiment plan matrices for fixed and random effects
respectively.

M1 | T

(Throughout this article, all random variables in model equations are
underscored.)

Additionally, the following is assumed:
u ~ N(0,G), e ~ N(O,R),

E(y) = X8, Var(y) =ZGZ’ +R =V,

y V ZG R
Varlu|=|GZ' G 0
e R 0 R

(Henderson 1963, 1975, 1990 p. 1ff).

The differences between the models included here can be represented clearly, if in
the case of a block design all random effects are described in the matrix R when
assuming random block effects.

For k=1,...,r blocks, the covariance matrix of the error effects Rycpp is
transformed into a block-diagonal matrix, again with r blocks of the following
shape:
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Random variables located in the same block have the same covariance regardless
of the concrete spatial order, random variables not located in the same block have
a covariance of zero. By contrast, covariances in the spatial model are flexibly
formulated with dependence on the actual spatial distance. The covariance matrix
for the error effects takes the following form:

~ ) -
o 0, .. O, .. 0O,, O,
2
0-21 o 0-2 n
Rspatial = 0-1 1 O-z j O-x n
o 2
n-11 o O-n—] n
2
_O-nl o-n2 anj o-nn—-l o i

For the diagonal called sill, it holds true that 6° = GR + 00 , with O'R being called
the nugget and 0’0 going by the name of partial sill. For the non-diagonal
elements, it holds that ¢;; = o.f (d;)) . Here, dj; is the Euclidian distance between
two spatial points i and j:

d; =\/(x,. —xj)2+(y,. —y].)2 .

For example, the coordinates i (x;, y;) and j (x;, y;) describe the median points of 2
plots. In this example, x denotes the horizontal direction, and y denotes the
vertical direction.

The function f(d;;) is dependent on the spatial model. If p denotes the range
parameter, the following applies to the spatial models considered in this
contribution (Schabenberger and Pierce, 2002 581ff):
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(1) Exponential Model
f(d;) =exp(—d;/p),

(2) Spherical Model

3

d, &
f(d;)=[1- 55’— + Ep—%](dij <p,else0).

While the covariance is O for dj =p in the spherical model, it moves
asymptotically against 0 in the exponential model and lies at 0.050% for dj; =3p.
For this reason, 3p is often called the practical range or effective range.

The employed models are isotropic, i.e., the covariance is independent of the
direction. However, an extension to anisotropic models is possible and can be
implemented at the software level as well (SAS, 2003).

2.2 Simulated Data Structures and Parameter Variants

The simulated data structures and analysed parameter variants have been derived
from the analysis of Hu (2004) and Spilke (2005). This will help cover a broad
range of potential application scenarios with regard to the generalisation of our
results.

We analyse two data structures with a=10 and a=20 treatments respectively, and
with r=3 and r=4 replications respectively. When doing so, we assume a plot size
of 3m x 4m. The assignment of the treatments to the plot was performed during a
single use of the SAS procedure PLAN (SAS, 2003).

The analysed parameter variants refer to partial sill=1 and range parameter (5, 20,
50) in case of no nugget effects (nugget=0); and the combinations (partial sill,
nugget): (1,10), (1,1), (10,1) for range parameters (5,20,50). This results in 12
simulation variants. The proportion of the spatial structure PSS =0, /(0; +03)

takes the values 1 (no nugget), 10/11, 1/2 and 1/11. Each of these variants is
simulated according to the exponential and the spherical model with 10,000 runs
under the null and alternative hypothesis (with delta=1 for all contrasts described
in more detail below). This simulation sample size will guarantee that the width
of a 95% confidence interval for the empirical Type I error rate o is only 0.0086
when 0=0.05. All simulations are performed using the DATA step, and the IML
and MIXED procedure respectively of the SAS System (SAS, 2003).
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The simulated data are then evaluated according to a block design, an exponential
model, and a spherical model. This contribution thus initially assumes the
existence of spatial co-variances only. Accordingly, a spatial trend does not exist.
Of the 45 and 190 possible contrasts between analysis elements for a=10 and
a=20 respectively, we analysed 3 contrasts each, all of which were selected by the
criterion that on average, a comparatively low, medium and high spatial distance
should exist over all replications of the treatments for the respective plan. Thus,
the contrasts differ with regard to their median Euclidian distance d i -

In particular, the following applies:

for a=10: small (contrast 1-10) cL.j =7.4m (Min 4m, Max 12.6m),
medium (contrast 5-7) ch =119m (Min 6m, Max 24.3m),
large (contrast 3-6) ch =16 m (Min 6m, Max 28.2m),

for a=20: small (contrast 4-17) cL.j =11.3m (Min 3m, Max 26m),
medium (contrast 2-15) ch =16.4m (Min 3m, Max 33.6m),
large (contrast 9-20) d j=21.4m (Min 9.8m, Max 29.4m).

This approach allows for a targeted analysis of the influence of the spatial
distance within an experimental design.

2.3 Evaluation of the Simulated Data

For the simulated variants and evaluation models, the observed and estimated
standard errors as well as the maintenance of the nominal error for a valid null
hypothesis and the power for a valid alternative hypothesis respectively are
represented.

The mixed model analysis for model (1) uses the case of block design ANOVA,
otherwise REML for estimating variance components and different methods for
approximating the degrees of freedom. Estimable functions h'ﬁ of fixed effects
are estimated based on h’/B=h’"(X’V'X)"X’V'y with V being replaced by a
plug-in REML estimate. Null hypotheses of the form Hy: h' = 0 are tested by

____hB
b (X Vx)h

t ~ (V). ()

In general, the test statistic in (2) only has approximate t-distributions and its
degrees of freedom must be estimated. The approximate degrees of freedom were
determined using different methods:
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(1) Satterthwaite method (Satterthwaite (1941): Extended Satterthwaite method of
Giesbrecht and Burns (1985) and Fai and Cornelius (1996);

(2) Kenward-Roger method (Kenward and Roger, 1997): This approximation also
uses the basic idea of Satterthwaite (1941). Its extension relative to the
Satterthwaite method of Giesbrecht and Burns (1985) and Fai and Cornelius
(1996) is an asymptotlc correction of the estimated covariance matrix of the fixed
effects (X A\’ 'X)" due to Kackar and Harville (1984) in unbalanced data
structures.

All evaluations were executed without any parameters given. If the true model did
not contain any nugget effect, no such effect was included in the evaluation model
either. If starting values were given or if possible nuggets were included in
general, the results might differ from those shown here.

3 Results

General remarks

We examined all data structures, model variants and approximations of the
degrees of freedom both for the case of a valid null hypothesis and for the case of
a valid alternative hypothesis. However, due to space restrictions, we will refrain
from including all results in the subsequent section. The complete results are
available in a relational database (MS Access) and may be requested from the
second author.

3.1 Estimated and Observed Standard Errors of the Contrasts for Different
Approximations of the Degrees of Freedom

First, this section will present the influence of the applied evaluation models on
the estimated standard error of the analysed contrasts. In order to do this, the
estimated and observed standard errors are calculated for each evaluation model
and contrast. The estimated standard error is the root of the average of a contrast’s
error variances estimated per simulation run. The observed standard error results
from calculated standard deviation, based on the contrast’s estimation values per
simulation run. The difference between the former and the latter standard error is
represented percentage-wise in relation to the observed standard error. This
approach allows for a good evaluation of how the respective evaluation model can
correctly reflect the variability of the estimated values as part of the test statistics
in use for different data structures, parameter combinations and true models. It
should be noted that the differences between the estimated and observed standard
errors do not depend on the parameter differences, i.e. if the alternative hypothesis
is valid, the results will be the same.
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The results in all tables are sorted by the values for the PSS; within identical PSS,
they are sorted by range parameter in descending order. This sorting also
represents a decrease in the spatial correlation.

The results for the second data structure (a=20, r=4) without correction are given
in Table 1. When the exponential and the spherical model are used as simulation
and evaluation model respectively, the representation does show the expected
underestimation (Kackar and Harville, 1984); however, it is below 5% in most
cases. Additionally, the deviations are consistently smaller for the larger amount
of data (a=20, r=4), compared with the first data structure (a=10, r=4) (results not
reported here). An explicit dependency on the degree of the spatial variability and
on the spatial distance of the considered contrasts has not been observed when
these evaluation models are applied.

When using the block design as evaluation model, this does not apply. In this
case, the most explicit misestimations appear for a comparatively high spatial
correlation (nugget=0, partial sill=1, range=50). Furthermore, a clear dependency
of the deviation on the spatial distance of the considered treatments can be
observed. Treatments with a comparatively small or high distance respectively
exhibit the highest bias. Since the block design model provides the same
estimation error for all considered contrasts — regardless of the spatial distance — a
small spatial distance can result in a partially immense overestimation, and a large
spatial distance might result accordingly in a considerable underestimation of the
true standard error. For low spatial dependencies (nugget=10 and partial sill=1),
however, the standard error can be estimated with only small deviations even
when using the block design. In this case, differences are even lower compared to
the use of the exponential and spherical model respectively. The reason becomes
obvious when we consider the small sample size, since the less complex model of
the block design is more advantageous here due to the smaller number of
parameters to be estimated.

Aside from the approximation of the degrees of freedom based on Satterthwaite
(1941), we also analysed the use of the Kenward-Roger method (Kenward and
Roger, 1997) (Table 2 for a=20, r=4). This method corrects the underestimation of
the standard error of the fixed effects for unbalanced data. The exploitation of the
unbalancedness for the correction of the error variances of the fixed effect comes
along with the fact that in our case with the block design as evaluation model,
there are no differences from the Satterthwaite method. When using the
exponential and the spherical model, a partially still significant reduction of the
underestimation of the fixed effects standard errors can be achieved for all cases
where nugget > 0. It is remarkable, though, that for the variants with nugget=0, by
contrast, the correction leads to a significant overestimation for the average of all
simulation runs. The reason lies in the rather large values for the standard error
for a small number of simulation runs (about 3%). On closer examination, it
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becomes obvious that these are cases with particularly high estimates for the
range parameter and with large estimation errors for partial sill and range. These
have an important impact on the correction and lead to extremely high values for
the corrected standard errors of the estimated contrasts.

In cases where nugget > 0, this does not happen, since the variance components
for partial sill and nugget can apparently be separated with less difficulty there,
despite the fact that an additional parameter has to be estimated compared to cases
where nugget = 0.

3.2 Validity of the Null Hypothesis — Maintenance of the Nominal Type I
Error

The results of the hypothesis test with the null hypothesis valid are summarized in
Tables 3 and 4.

When using the block design as evaluation model, the explicit impact of the
spatial distance on the respective contrast becomes obvious. For contrasts whose
analysis shows low spatial distances, the empirical Type I error is not exhausted:;
for contrasts with high spatial distances, it is occasionally exceeded considerably.
This is especially true for the plan a=20, since the spatial dependencies have a
particularly strong influence here due to the larger number of plots. As a result, an
extreme bias can be observed for this plan for all cases with a significant spatial
dependence (PSS=1/2...1). Only when the nugget variance is relatively high
compared to the partial sill (nugget=10, PSS=1/11) can we assume an acceptable
maintenance of the nominal Type I error when using the block design as
evaluation model.

Considerable improvements for the preservation of the nominal error can be
achieved when using a spatial model as evaluation model. For both plans,
however, a tendency towards overestimation cannot be ignored. However, the
deviation from the nominal Type I error is much smaller for the plan with a=20
compared to the plan with a=10.

When using a spatial evaluation model, no apparent systematic differences
between contrasts with low, medium and high spatial distance can be observed.
Due to the relatively precise match between observed and estimated standard
errors (see Section 3.1) and due to the partially extreme impact of the correction
based on Kackar and Harville (1984), the use of corrections does not provide any
advantage for the experiment plans presented here. Hence we refrain from
presenting here the results of the hypothesis test for the use of the approximation
of the degrees of freedom based on Kenward and Roger (1997). The authors
nonetheless have these results available.
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3.3 Validity of the Alternative Hypothesis — Analysis of the Power

In the previous section, a partially extreme bias of the nominal Type I error was
shown in particular for the use of the block design. In order to arrive at a
comparative evaluation of the power, this effect has to be excluded, since the
power will increase accordingly whenever the nominal Type I error is exceeded.
Therefore, the power shown in Table 5 is corrected by the bias of the nominal
Type I error for the given validity of the null hypothesis in the form: corrected
power = power (t-quantile) — [Type I error rate (empirical) - Type I error rate
(nominal)]. This approach is not exact but appears to be sufficient for the
conclusions to be drawn here.

The effects of this approach shall be illustrated with an example (exponential
model: plan a=20, without nugget, range=5, partial sill=1). If the null hypothesis
is valid, the empirical Type I error when using the t-quantiles and applying the
exponential model is 0.051 for contrast 1 but 0.099 for the block design (Table 4,
Figure 1). In other words, when using the exponential model as evaluation model,
the assumed t-distribution applies, and the t-quantiles and the empirical quantiles
achieved in the simulation (exponential model, empirical quantiles) match. When
using the block design, however, this does not apply (block design, t-quantiles).
However, the matching quantiles for the nominal error of 0.05 can be determined
when using the simulated data (block design, empirical quantiles). These
empirical quantiles allow for correction and hence the determination of the actual
power.

contrast parameter

= = = Block design (empirical quantil)

= == Block Design (t-quantil)

= Exponential Model (empirical quantil=t-quantil)
= = Block Design (corrected power)

f
L

Figure 1: Power for the Exponential Model and Block Design (contrast with large spatial
difference, True Model: Exponential Model (Partial Sill=1, Range=5, Nugget=0))
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Figure 1 illustrates the difference between the power based on t-quantiles and on
empirical quantiles, both of which have been derived from simulations with
various parameter differences. As becomes clear, the corrected power does not
match the empirical quantiles but represents the actual power when using the
block design much better than would be the case when applying the t-quantiles.
The results show this for both plans. In Table 5 the results are reported for a=20,
r=4; results for a=10, r=3 are not reported here. The application of the spatial
models realizes a considerably higher power. Again, a comparable power for the
block design can be realized only for cases with a high nugget variance (nugget =
10) and with relatively low significance of the spatial covariance (PSS=1/11).

4 Discussion and Conclusions for Practical Evaluations

The great importance of the spatial covariances to be expected from a logical and
subject-related perspective is confirmed in a variety of experiments. Accordingly,
an adjustment of the evaluation models is necessary.

The analysis of the use of a true model and evaluation models different from it, as
presented in this paper, shows a considerable influence on the maintenance of the
nominal Type I error rate and on the power. If a block design is used for existing
spatial covariances, the nominal Type I error rate is expected not to be reached or
to be exceeded considerably, depending on the spatial distance of the
observations. In contrast, the spatial distance can be considered in a flexible
manner when using a spatial model.

If the bias of the Type I error rate is corrected during the power analysis, a
considerable loss becomes apparent for the corrected power compared with the
observed power when using the block design.

The cross-wise use of the included spatial models (exponential and spherical) as
evaluation models, however, exhibits a rather low influence compared to the
respective true model for the validity of both the null hypothesis and the
alternative hypothesis.

Additionally, when evaluating with the SAS procedure MIXED, the
approximation of the degrees of freedom based both on Satterthwaite (1941) and
on Kenward and Roger (1997) was examined. While the Kenward-Roger method
is recommended for unbalanced data and achieves a significant improvement in
the preservation of the nominal Type I error rate both for alpha-designs (Spilke et
al., 2004) and for block, split-plot and strip plot designs with missing values
(Spilke et al., 2005), this does not always apply to the spatial models examined in
this paper. Apparently, the standard errors of the parameters to be estimated for
- the spatial functions are estimated without sufficient precision, with the
consequence that the subsequent correction of the standard errors of the fixed
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effects occasionally delivers unrealistically high values and cannot be
recommended for application. Our results agree with Schaalje et al. (2002). They
investigated repeated-measures designs with five covariance structures. In their
simulation study, the Kenward-Roger method worked as well as or better than the
Satterthwaite method in all situations and produced Type I error rates close to the
nominal values in case of Compound Symmetry and Toeplitz structures. When
the covariance structure became more complex (First-Order-Antedependence),
even the Kenward-Roger method had problems and produced inflated error rates.
Thus the Kenward-Roger method should be used with particular caution when the
random part of the model does not have a simple structure.

Overall, the results demonstrate that the common block design does not represent
an adequate analysis model in the presence of important spatial covariances. The
use of this analysis model in scenarios with high spatial covariances leads to
considerable bias of the Type 1 error or to a loss of power. Taking into account
the fact that spatial covariance in practical applications may be quite different, the
choice of the analysis model is of fundamental importance. The experiment
designer needs to be provided with a decision-support tool in order to arrive at a
justified selection of a model. The results at hand are thus the starting point for
further research with the main goal being to define the criteria required for a
sufficiently justified model selection. Test-based methods are discussed in Stroup
(2002) and Cederkvist et al., (2005). Further options arise from the use of
analytical criteria such as the Akaike criterion and its modifications (Akaike,
1996; Hurvich and Tsai, 1989) or the ICOMP criterion (Bozdogan, 2000).
Methodical experiments on comparison of the effectiveness of these methods are
urgently needed and are the subject of current research by the authors.
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